
Efficient Models

By Yuhang Song

[This Note is recorded from 7th Sep 2022 to 26th Sep]

Efficient Methods
From last week`s content, we know that the energy is mainly consumed in DNNs by data

transferring(in memory), and MAC(Multiplication & Accumulation) operations. In order to reduce the

energy consumption, we need methods or models that reducing the cost of memory and compute in

DNNs, that is, the Neural Network Compression.

According to recent paper surveries [0][1][3], we can classifies the current existing efficient

compression methods by their different objectives in the following way:

CLASS OBJECTIVE MAJOR METHODS

Compact Model
Design smaller base models that can still achive

acceptable accuracy.

Efficient Lightweight

DNN Models

Tensor

Decomposition

Decompose bloated original tensors into more

smaller tensors.
--

Data Quantization Reduce the number of data bits. Network Quantization

Network

Sparsification

Sparse the computational graph(number of

connection/neurons).
Network Pruning

Knowledge

Transferring

Learning output distributions of trained large

model.
Knowledge Distillation

Architecture

Optimazation
Optimaze the model parameters. NAS, Genetic Algorithm

Compact Model
Mordern DNNs` performence impovement is mainly driven by deeper and wider networks with

increaseed parameters and operations(MACs)[0], the compact models tends to reduce overhead

while maintaining accuracy as much as possible.

Compact models try to design smalleer based models by allowing deeper/wider networks with

expanded FMs, more complex branch topology, and more flexible Conv arithmetic. They can be

classified based on the following two aspects:

�. Ensure large spatial correlations(Receptive Field) while remains compact.

�. Ensure deeper channel correlations while remains compact.

Overview on Current DNN Models
I have taken an overview on most of the popular models that are proposed in the DNN field, all of

them have different characteristics over network accuracy, speed, and size. Taken the example from

the paper[0] which summerize the most frequently used DNN models:

From above illustrated models, the following DNN models are typically being referred as Lightweight

Models:

SqueezeNets

ShuffleNets

MobileNets

GoogleNet (Inception)

EfficientNets

NasNets

DenseNets

...

I will then evaluate each of them by understanding the foundamentals of the idea, implementations,

as well as the comparisons & commonalities between them.

MobileNets

Main Idea

Paper presented on 2017 by Google [3]. Lightweighted Deep Convolutional Neural Network with

drastic number of parameters and calculation operations drop while maintaining reasonable

accuracy. Targeting to deploy or train on edge devices with less power consumption, as well as the

model size, together with faster inference time (latency).

The main idea used in MobileNet is construct relatively compact deep neural networks with use a

form of factorized convolutions, namely Depthwise Separable Convolution, to enable both spitial

correlations and channel correlations.

Different from the conventional convolution operations, Depthwise Separable Convolution is

performed as follows:

�. [Depthwise Convolution] Apply one single filter to each channel of input featuree map. Ensures

the spatial correlation.

�. [Pointwise Convolution] Apply filter of size 1x1 to the combined output of the Depthwise

Convolution. Ensures the channel correlation.

Depthwise Separable Convolution performs convolution channel by channel, then combines the

resulting tensors by using Nx1x1x(#Channel) fileters to produce output. Saving dramastic parameters

comparing with the standard method.

As shown above, treat the Depthwise Seperable Convolution as two separate layers, both Depthwise

Convolution and Pointwise Convolution is followed by a batch normalization layer and Relu

nonlinearity.

The whole architecture proposed by the paper is as following :

By using this architecture, the paper also concludes the resources used by each layer type, the most

calculations and parameters are from 1x1 pointwise convolutions, as shown in table 2.

Additionally, the paper subsequently introduced 2 multipliers to allow tradeoffs between model size,

latency, and its accurary.

Width Multiplier: Used to thinner the models uniformly at each layer, denoted by .

Denote the number of input channel as and number of output channel as , after applying

this multiplier they become and .

Resolution Multiplier: Used to reduce the size of the input image and internal feature maps

uniformly in each layer, denoted by . Denote the size of feature maps as , after

applying this multiplier they become .

Evaluations

Denotions Table: (Kearnel Size); (Input Feature Map Size); (Number of Input Channels);

 (Number of Output Channels).

A standard convolution method has the cost of:

By using depthwise separable convolution, the cost is:

By using depthwise seeparable convolution, we get a reduction in computation of:

As for the accuracies comparison, the same MobileNet architecture uses standard convolution and

the one uses deepthwise separable comvolution is given by the following:

MobileNet using depthwise separable convolution loses only 1% of the accuracy while keeping 8-9

times less MAC operations and parameters. The paper also compared MobileNet to other widely

used models:

α ∈ (0, 1]
M N

αM αN

ρ ∈ (0, 1] D F

ρD F

D K D F M

N

(D) ∗K
2 M ∗ N ∗ (D)F

2

(D) ∗K
2 (D) ∗F

2 M + M ∗ N ∗ (D)F
2

 =
(D) ∗ M ∗ N ∗ (D)K

2
F

2

(D) ∗ (D) ∗ M + M ∗ N ∗ (D)K
2

F
2

F
2

 +
N

1

D K
2

1

The paper also indicates that, by expirements, the width multiplier should be to maintain

good performance and the resolution of the input image should be greater than , otherwise the

accuracy could be droping below .

Question

As also been discussed and strongly recommanded in [0], large amount of current existing

compact models are using pointwise convolution, including MobileNet. Pointwise convolution

combined with depthwise convolution is relatively efficient and saving comparing to general

convolution, yet it is responsable to most of the complexity comparing with other layers, as we

can see in MobileNet. Can we reduce its complexity?

MobileNet V2

Theory

Intuitively, the computation & memory cost of DNN models depend largely on the input resolutions

and the number of tensors channels of the inner computing graph. Conventional convolution

methods extracts feature information by internal Conv kernels that map the input into higher

dimensions(channels) to allow the original image to form a "manifold of interest"[3] we wish to learn,

by set of those inner-layer activations. Since it has been long assumed that manifolds of interest in

DNNs could be embedded in low-dimensional subspaces, in order to design compact models, we

can reduce the operation space by simply reducing the dimensionality of the layers, while remaining

the shape of the "manifold of interest".

MobileNet V1 uses width multiplier/resolution multipliers[2] to allow tradeoffs between computation

and accuracy. Following above intuition, those multipliers allows one to reduce the dimensionality

until the manifold of interests spans the entire space[3].

However, due to the non-linear property of Conv layers, the "manifold of interests" may collapse. The

paper[3] gives an intuitive illustration of this idea by embedding low-dimensional manifolds into n-

dimensional spaces:

α > 0.25
128

60%

It is can be observed that the information losses a lot when low-dimentional(e.g. when n=2,3)

manifold is transformed with ; whereas the information mostly reserved when high-

dimentional manifold is transformed with .

This result suggesting use more dimensionalities as possible, and it is conflicting with the idea of

lightweighted models including MobileNet V1.

MobileNet V2 is trying to address this problem, preventing the information loss, as well as remaining

even lower parameters/memory usage.

Main Idea

The insights used for MobileNet V2 architecture can be views as the follows:

Depthwise Separable Convolution - Saving parameter and operation complexities.

Linear Bottlenecks - Using the partial non-linearity property of function, insert a linear

transformation after high-dimensional transformation to address the conflict of

complexity and manifold collapsion.

Inverted Residuals - More memory efficient to shortcut connections between linear layers.

(When stride=2 this can be optional according to the paper.)

This design is named the Bottleneck Residual Block, with a 1x1 filter performing transformation to

increase the dimensionality of input activated by , then perform 3x3 depthwise convolution,

subsequently using another 1x1 filter to perform linear transformation to produce the output, reduce

the dimensions as well as preventing lose of information. Lastly, add shortcut connections between

consecutive linear layers to improve the ability of a gradient to propagate across layers. Each layer is

followed by a batnormalization.

As illustrated in below:

ReLU

ReLU

ReLU

ReLU

ReLU6

The whole architecture of the proposed MobileNet V2 is given by the following:

Evaluation

Note that despite V2 has more deeper network than V1, its the computation cost and accuracy is

better that V1, since the network`s nature(BottleNeck Depthwise Conv) allows smaller input and

output dimensions.

The paper experiments the performance of MobileNet V2 over MobileNet V1, ShuffleNet, and NAS

method on image classification task, the result is given as the following:

The result suggests that with even resolution of 96x96, MobileNet V2 produces acceptable result

than MobileNet () with about less parameters.

MobileNet V3

Main Idea & Background Knowledge

Proposed by Google in 2019. The MobileNet V3 achives better performance, with more

accurate on ImageNet classification while reducing latency by , in comparison to previous

MobileNet V2. It is mainly constructed from the following ideas:

Bottleneck Block with SENet block introduced.

2 Neural Architecture Search algorithms are used, for block optimization and layer

optimization.

Redesigned some of the redundent expensive structures.

New Nonlinearities.

In order to understand the design details of MobileNet V3, we need to firstly take a look at

Mnasnet[5] & Netadapt[6] & SENet[8].

Mnasnet: Platform-Aware NAS for Mobile [5]

Proposed by Google in 2019, Mnasnet is an Neural Architecture Search guilded auto designed model,

its main conribution is proposed that the conventional FLOPS proxy used widely in NAS methods are

not the accurate approximation of the model lantency, it novelly used the real lantency

measuremeants from running model on physical devices and thus guild the design.

The following figure is an overview of Platform-Aware Neural Architecture Search method for mobile:

The RNN controller firstly sample model parameters from the search space, then the trainer excutes

with selected parameters, and accordingly evaluate the accuracy of the current model, the model is

≥ 60% 10%

3.2%
20%

subsequently passed into real mobile phones to obtain the real lantency, together with model

accuracy and latency, compute the manually definded reward and feedback to the controller.

The objective function for Plateform-Aware NAS is definded as:

However, given the computational cost of performing NAS, we are more interested in finding multiple

Pareto-optimal solutions in a single architecture search, instead of maximize a single metric.

Plateform-Aware NAS uses a customized weighted product method to approximate Pareto optimal

solutions, the goal is defined to:

In which the is the weight factor defined as:

Empirically, the paper suggests that doubling the latency usually brings about 5% higher accuracy

gain, by idea of obtaining Pareto-optimal, given two models, (1) M1 has latency and accuracy , (2)

M2 has latency and accuracy , they should have similar reward, definded as follows:

Solving for above equation gives , Plateform-Aware NAS uses in their

experiments unless explicitly stated.

In additional, Factorized Hierarchical Search Space is used to ensure the diersity of models, the

baseline search structure is shown in below:

Use Reinforcement Learning approach to find Pareto optimal solution for multi-objective search

problem.

Netadapt: Platform-aware neural network adaptation for mobile applications [6]

Proposed by Google in 2018. Netadapt is an layer by layer network compression algorithm, which

alters the number of filters in each layer to obtain given resource budget, for a certain pre-trained

 ACC(m)
m

max

w.r.t. LAT (m) ≤ T

 ACC(m) ×
m

max []
T

LAT (m) w

w

w = {α

β

LAT (m) ≤ T

otherwise

l a

2l 1.05a

Reward(M1) = a⋅ () ≈
T

l β Reward(M2) = a⋅ (1 + 5%)⋅ ()
T

2l β

β ≈ −0.07 α = β = −0.07

model.

It is propsed in the pape, that similar to [5], the traditional measurements of #parameters and #MACs

might not be sufficient to conclude the latency and energy consumption. Netadapt also uses the

direct metric to guild the filters pruning.

One main difference between Netadapt filters pruning and energy-aware pruning[7] is that Netadapt

uses empirical matric per layer to estimate the real resouce consumption, so that no further detailed

lower-level knowledge is required for estimating the real matrics.

The problem can be formulated as the following:

Whereas in Netadapt, considering maintaining the accuracy needs re-train for each alternation step,

it breaks above problem into following series of easier problems and solves it iteratively:

Where is called "Resource Reduction Schedule", similar to the concept of learning rate

schedule, It is an hyper-parameter stands for the reduction step size for each iteration.

The full algorithm of the proposed method is shown in below:

Where the algorithm iteratively find solutions that within current resource budget in each iteration,

layer-by-layer, perform ShortTermFineTune after each filter-pruned layer. Each time a layer is pruned,

a new network with only that specific layer is pruned is generated and stored.

After all the layers have been evaluated, select one network with the highest accuracy from the

stored (Equal to number of layers) networks.

Repeat the process until the budget limitation is satisified.

More intuitive explanations of the process is shown in below:

 Acc(Net)
Net

max

w.r.t. Res (Net) ≤j i Bud , j = j 1, ...,m

 Acc(Net)
Net i

max i

w.r.t. Res (Net) ≤j i Res (Net) −j i−1 ΔR , j = i,j 1, ...,m

ΔR i,j

K

Since it is epensive to estimate the real matrics for resources consumption for the whole network, the

paper propsed a method using layer-wise look-up tables for fast resource consumption estimation,

obtained from the empirical data.

Squeeze-and-Excitation Networks [8]

The paper introduced a method to emphasis the channel-wise features and their correlations by

"Attention" mechanism. In which for a convolution output , where is the input and

 is the standard convolution operation, we can plug in behind an SE block to boost feature

discriminability.

As illustrated above, a Squeeze-and-Excitation block consists of three steps:

 : Squeeze - channel wise average pooling operation. Formally, the -th element of

output is defined as: .

 : Excitation - fully connected nonlinear activation. Formally, the ouput is

defined as: , where is

activation, and is activation.

 : Scalling - channel wise factor multiplication. Multiply the output from previous

layer of the "importance scores" for each layer to thmselves.

U = X ∗ F tr X

F tr

F (⋅)sq c

z z =c F (u) =sq c u (i, j)
H×W

1 ∑i=1
H ∑j=1

W
c

F (⋅,W)ex s

s = F (z,W) =ex σ(g(z,W)) = σ(W δ(W , z))2 1 σ Sigmiod

δ ReLU

F (⋅,⋅)scale

Such design won the first place in the ILSVRC 2017 classification competition with top performing

model ensemble achieves a top-5 error on the test set, that is relative improvement

compared with previous winner.

The paper proposed that SE block can be used in any state-of-art DNN architectures, the figure

shown above is an example of ResNet integrated with SE block, this is called SE-ResNet.

Question: Would it be sufficient to pooling channel wise spatial information by just 1 value? What if a

input of large resolution, would it be better to use more values (a 2x2 descriptor for example) ?

Now back to MobileNet V3. There are two types of MobileNet V3 models according to the paper, the

MobileNetV3-Large & MobileNetV3-Small, targeted at high and low resource use cases respectively.

Block Structure

The MobileNet V3 integrates lightweight attention module Squeeze and Excitation into its

bottleneck block structure, where the SE block is placed after depthwise convolution inthe expansion

for attention to be applied on the largest representation. As can be observed from above.

Furthermore, MobileNet V3 uses compression rate as in fully connected layers, by expiriments,

doing so increases the accuracy at the modest incrase of number of parameters, and with no

discernible latency cost.

Network Search

1 - Block-wise Search

2.251% ≈ 25%

 4
1

MobileNet V3 used Platform-aware Neural Architecture Search approach for large mobile models,

and found the similar results as in [5], therefore MobileNet V3 simply reuse the same MnasNet-A1 as

initial large mobile model.

However, by observations that small mobile is more lantency-sensitive, in other words the model

accuracy changes more dramatically with lantency for small models, the original assumption made in

[5] for the empirical accuracy-lantency rate might not be suitable. Therefore, MobileNetV3-Small

uses weight factor insteead of .

2 - Layer-wise Search

After the rough blocks architecture is defined, MobileNet V3 then uses NetAdapt as complimentary

to search for optimal individual layer configurations in a sequential manner, rather than trying to infer

coarse but global architecture.

MobileNet V3 has modifed the algorithm by selecting the final proposals by one that maximize

, in which satisifies reduction schedule . The intuition is that because our

proposals are discrete, we prefer proposals that maximize the slope of the trade-off curve.

By setting and , where is the lantency of the original model, and is

the number of iterations for excuting NetAdapt algorithm. Like did in [6], the proposals for MobileNet

V3 are allowed from the following two types of altering:

Reduce the size of any expansion layer;

Reduce bottleneck in all blocks that share the same bottleneck size to maintain residual

connections.

Redesigning Expensive Layers

The current model based on MobileNet V2 uses 1x1 pointwise convolution as the final layer for

dimension expansion, and then after Avg Pooling + anotehr 1x1 convolution, reduce the both channel

size and feature map size to prodece output. The final dimension expansion layer is important as it

ensures rich features for prediction, however, this is lantency-expensive.

MobileNet V3 moves this layer past the final average pooling. This makes the computation of the

features becomes nearly free in terms of computation and latency.

By moving this layer after average pooling, the previous projection layer is no longer needed to

reduce the computation, thus the projection layer and its 3x3 depth filtering layer(Replaced by

Average Pooling) of the last bottleneck block are all removed. Full structure is shown in below:

This design choise reduces latency by of running time, that is , and reduces

MAdds with almost no loss of accuracy.

w = −0.15 w = −0.07

 ∣ΔLatency∣
ΔAcc ΔLatency ΔR

ΔR = 0.01∣L∣ T = 10000 L T

11% 7ms 30 millions

Another improvement is that for the vary first convolutions, current mobile models tend to use 32

filters in a full 3x3 convolution to build initial filter banks for edge detection, often these filters are

mirror images of each other, MobileNet V3 novelly used 16 filters instead while maintaining the same

accuracy as 32 filters, but with additional and saving,

Nonlinearities

The piece-wise linear hard analog of and activations is introduces in MobileNet V3,

formally:

It is found by the expiriment that those hard functions have no discernible differences than the soft

ones in accuracy, but they are:

�. More friendly in quantized mode since it eliminates potential numerical precision loss caused

by different implementations of the approximate sigmoid.

�. h-swish can be implemented as a pice-wise function to reduce the number of memory acesses

driving the latency cost down substantially.

In addition, the paper also mentioned that because the cost of applying nonlinearity decreases as we

go deeper into the network, due to the reductions of resolution size which halves each layer

activation memories everytime, MobileNet V3 only uses h-swish functions in deeper layers(Secound

half of the layers). Even with this, the h-swish function still introduce some latency cost, this can be

addressed by using optimized implementation based on a piece-wise function.

Architectures

The complete architecture designs for MobileNetV3-Large and MobileNetV3-Small is given in below:

2 millisecounds 10 millionMAdds

Sigmoid Swish

hard − Sigmoid[x] =

6
ReLU6(x + 3)

and

hard − Swish[x] = x

6
ReLU6(x + 3)

Evaluations

Inceptions
(Which I call "Thee Width Learning" lol.)

GoogLeNet & Inception V1

GoogLeNet won the first place of 2014 ILSVRC chanllenge, first proposed by Google in 2014, variase

impovements are being made afterwards, including InceptionV2(BN), InceptionV3, InceptionV4 and

Xception.

Theory

The paper[9] proposed that deeper(blocks)/wider(channels) DNN models are with large number of

parameeters and thus more easily to be trained as overfitting model, where for high quality models,

the training dataset could be very limited since preparing such dataset is not just trick, but

expensive.

Another issue of those models is the increased computational cost and the memory cost, which is

very energy-inefficient. The fundamental way of solving both issues that are widely used during that

time is sparses the computational graph, however, since the lower-level hardware designs of our

computing devices are mostly structured designed, sparse redundent weights randomly does not

bring much benefits to the models. Structural Purning proposed later, however, is lossing the

accuracy of DNN models.

The paper referenced the main result of [10], which states that:

If the probability distribution of the dataset is representable by a large, very sparse deep

neural network, then the optimal network topology can be constructed layer by layer by

analyzing the correlation statistics of the activations of the last layer and clustering neurons

with highly correlated outputs.

Neurons That Fire Together, Wire Together. --Hebbian Priciple

Based on above, the Inception structure is proposed, with dense wider design to approximate local

sparsity and aggregate the resulting chennels as the output. The idea of Inception block is

descripted as the following:

In first attempt from 2(a), the Inception is consistes of combination of all state-of-art sparse layers

with their output filter bancks concatenated into a single output. With 1x1 dimension reduction is

applied, rather than the naive approach, the Inception block could be extracting more informative

information (from difference sparse units + different scale spatial information with multi-kernel

sizes), by using above designs, Inception is allowed to increaseing units at each block without

computational complexity blowing-up, whilist keeping the lower-level sparse computational away.

An compact model using Inception blcoks is proposed in the paper, namely the GoogLeNet (With 2

additional auxiliary classifiers weighted 0.3 at lower/middle depth):

This design wins VGG by ~1.5% less error rate.

Inception V2 (BatchNorm)

Proposed by Google in 2015 [11]. According the widely used SGD meethod for DNN weights

updating, the paper points that the layer output is largely effected by the inputs from the previous

layer. Therefore, during training/testing stage, the distributions of the inputs matters to the model. It

would be advantageous for the distribution of the inputs remain fixed over time so the network

weight does not have to readjust to adapt new distribution. Such distribution transformation of inter-

network nodes is called Internal Covariate Shift(ICS).

The paper proposed method called Batch Normalization, which is nowadays commonly used in DL

community.

During the backpropagation, the scale parameter and shift parameter also needs to be learned

by passing through the loss and compute the gradient with respect to these parameters. Batch

Normalization also allows learning rate to be set higher without weights blowing-up. Occasionally

speaking, with BN, the dropout layer is sometimes discared.

Inception V2 is based on Batch Normalization Method by adding BN after layer transformation, using

 as activation functions, and replace the 5x5 Conv by two consecutive 3x3 Conv:

γ β

l

ReLU

The Inception trained with different larger learning rate achives some result much faster interms of

training episodes.

Inception V3

Propsed by Google in 2015. [12] The paper relooked into the inception designs and propsed the

following 4 General Design Principles regarding DNNs, that empirically:

�. Avoid extreme representational bottlenecks, especially in the early network. Otherwise

information could be lost.

�. Higher dimensional representations are easier to process locally within a network, hence

converges faster.

�. Spatial aggregation can be done over lower dimensional embeddings without much or any loss

in rep- resentational power.

�. Balance network width and depth.

_

More efficient Inception could be achived by Factorizing the Convolution. First, factorize the

original convolutions to the combinations of smaller combinations stacking on top of each other, by

doing so, we made the in-block network deeper, hence imporved representation power of the non-

linearity of the model, while significantly saving parameters and MACs. As shown in below:

The resulting architecture will looks like the following:

Another approach to factorize the convolution, rather than replacing larger convolution by smaller

convolutions, is to factorize the original convolution into asymmetric convolution.

Wherea kernel of 3x3 could be disolved into stacking of 1x3 and 3x1, with 33% less parameters. As

shown in below:

In addition, the paper proposed an method of down-sampling. The current down-samplings are

performed by either:

�. Pooling -> Enlarge Dimensions: This will suffer lose of information.

�. Enlarge Dimensions -> Pooling: Computationally costy.

The paper proposed a method called Efficient Grid Size Reduction, which leverage the speciality

that Inception blocks have units, to parallely perform above actions to produce output. As shown in

below:

The complete structure of the InceptionV3 is given by:

Such approach achieves and less error rate compared with InceptionV1 and V2

respectively.

References
[0] Deng, Lei, et al. "Model compression and hardware acceleration for neural networks: A

comprehensive survey." Proceedings of the IEEE 108.4 (2020): 485-532.

[1] Cheng, Yu, et al. "A survey of model compression and acceleration for deep neural networks."

arXiv preprint arXiv:1710.09282 (2017).

[2] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam, H. (2017).

Mobilenets: Efficient convolutional neural networks for mobile vision applications.

7.8% 3.8%

[3] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 4510-4520).

[4] Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., ... & Adam, H. (2019). Searching

for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision (pp.

1314-1324).

[5] Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. V. (2019). Mnasnet:

Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (pp. 2820-2828).

[6] Yang, T. J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., ... & Adam, H. (2018). Netadapt:

Platform-aware neural network adaptation for mobile applications. In Proceedings of the European

Conference on Computer Vision (ECCV) (pp. 285-300).

[7] Yang, Tien-Ju and Chen, Yu-Hsin and Sze, Vivienne: Designing energyefficient convolutional

neural networks using energy-aware pruning. In: IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2017)

[8] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE

conference on computer vision and pattern recognition (pp. 7132-7141).

[9] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015).

Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 1-9).

[10] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma. Provable bounds for learning some

deep representations. CoRR, abs/1310.6343, 2013.

[11] Ioffe, S., & Szegedy, C. (2015, June). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. In International conference on machine learning (pp. 448-456).

PMLR.

[12] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception

architecture for computer vision. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 2818-2826).

